First Semester M.Tech. Degree Examination, Dec.2014/Jan.2015

Advanced Algorithms

ime: 3 hrs.

Max. Mark

Note: Answer any FIVE full questions.

Explain the asymptotic notations. θ , O and Ω notations.

(06 Marks)

Explain the master method for solving recurrences. For which case of the master theorem does the recurrences belong: i)

iii) $T(n) = 2\pi$

(08 Marks)

Illustrate the aggregate method of amortized analysis on binary counter operation.

(06 Marks)

Discuss the Bellman-Ford algorithm and find the shortest path for the graph shown in Fig. 2 (10 Marks) O2 (a). Using vertex 'd' as source.

Fig. Q2 (a) Applying Ford-Fulkerson algorithm, find maximum flow of given network G in Fig. Q2 (b) (10 Marks) and explain the steps.

Fig. Q2 (b)

Write recursive Fast Fourier Transform (FFT) algorithm and determine its running time.

b. Draw the butterfly diagram of 8-point parallel FFT circuit and describe the iterative FFT algorithm. (10 Marks)

- 4 a. Give the pseudocode for computing extended Ecludian. Find gcd (99, 78) using extended Ecludian and show the computation steps at each level of recursion. (06 Marks)
 - b. Discuss the chainese remainder theorem and find the solution to the equation $x = 4 \pmod{5}$ and $x = 5 \pmod{1}$.
 - c. Define a group and give its properties.

(04 Marks)

- Write the procedure for RSA cryptosystem. Consider a RSA key set with p = 17, n = 187 and e = 7. What value should be used in the secret key? What is the encountries of the message M = 88.
- b. Explain modular linear equation solver algorithm. Using modular linear equation solver algorithm, find all solutions to the equation $35x \equiv 10 \pmod{50}$. (10 Marks)
- a. Explain string matching with finite automata. Write state-transition diagram and transition function δ, for the string-matching automation that accepts all strings ending in the string ababaca.
 - b. Explain Boyer-Moore algorithm. Given the text: WHICH FINALLY-HALTS--AT-THAT and pattern is AT-THAT, match using Boyer Moore algorithm. (10 Marks)
- 7 a. Explain randomizing deferministic algorithms taking linear search algorithm as example.

(10 Marks)

b. Explain Monte-Carlo and Las-Vegas algorithm with appropriate example.

(10 Marks)

- **8** Write short notes on the following:
 - a. Potential method.

HIGH COLLINS

- b. Johnson algorithm for sparse graphs,
- c. Knuth-Morris Pratt algorithm.
- d. Probabilistic numeric algorithms.

(20 Marks)